Spatial and behavioral correlates of striatal neurons in rats performing a self-initiated navigation task.
نویسنده
چکیده
To investigate the spatial and behavioral correlates of striatal neurons during displacement movements, the rostromedial dorsal striata (AP 1.0-2.2, ML 1.5-2.0) of five rats were surgically implanted with advanceable bundles of fine wire electrodes. After recovery, the rats were deprived of water and trained in a square-walled open field in a dark room. The behavioral task required alternating visits to water reservoirs in the center and in the four corners. A certain corner contained the first reward for each trial; after this reward, a cue card appeared in this corner for the rest of the trial. The firing rates of striatal units were compared as the rat moved between the center and the four corners of the arena. Analyses were made of 30 units. Eight of these had firing rates that significantly increased or decreased by 62-480% while the rat was in one or more quadrants of the arena. Six of these manifested such firing rate changes only as the rat performed certain behavioral sequences in the quadrant. Three other units fired as the rat's head was in a certain orientation relative to the arena walls, in all parts of the arena. To determine the principal controlling cues and hence the frame of reference of spatial selectivity of these units, the arena, while the rat was still inside, was rotated in total darkness. The first water reward was then presented at the same position relative to the outside room as before the rotation. The cue card was then illuminated in this corner as a visual cue for the extra-arena reference frame. All 11 neurons demonstrated spatial selectivity that rotated with the arena; thus, this activity was in the frame of reference of the arena and was not controlled by the visual cue. Six other units fired at rates up to six times their resting discharge or stopped firing completely in synchrony with initiation or execution of displacement movements, and two of these were also location selective. Four other units were silent as the rat performed the task, but fired tonically following arena rotations or other interruptions of the session, independent of the rat's location or movements. Nine analyzed units had very low firing rates (< 1 impulse/sec) and showed no discernible changes in activity as the rat performed the task. These patterns of unit activity indicate that fundamental informational components required for navigation are coded in the striatum.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Task-dependent encoding of space and events by striatal neurons is dependent on neural subtype.
The dorsal striatum plays a critical role in procedural learning and memory. Current models of basal ganglia assume that striatal neurons and circuitry are critical for the execution of overlearned, habitual sequences of action. However, less is known about how the striatum encodes task information that guides the performance of actions in procedural tasks. To explore the striatal encoding of t...
متن کاملVitamin D Deficiency Impairs Spatial Learning in Adult Rats
Background: Through its membrane and intracellular receptors, vitamin D regulates many vital functions in the body including its well known actions on musculoskeletal system. Growing body of evidences demonstrate that vitamin D undergoes some of behavioral aspects of neurocognition. The present study was designed to evaluate the effect of food regimens without vitamin D or with a supplement of ...
متن کاملNeuronal activity in the rodent dorsal striatum in sequential navigation: Separation of spatial and reward responses on the multiple T task Running head: Striatal activity in sequential navigation
The striatum plays an important role in “habitual” learning and memory, and has been hypothesized to implement a reinforcement-learning algorithm in order to select actions to perform given the current sensory input. Many experimental approaches to striatal activity have made use of temporally structured tasks, which imply that the striatal representation is temporal. To test this assumption, w...
متن کاملNeuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple T task.
The striatum plays an important role in "habitual" learning and memory and has been hypothesized to implement a reinforcement-learning algorithm to select actions to perform given the current sensory input. Many experimental approaches to striatal activity have made use of temporally structured tasks, which imply that the striatal representation is temporal. To test this assumption, we recorded...
متن کاملContext-dependent reorganization of spatial and movement representations by simultaneously recorded hippocampal and striatal neurons during performance of allocentric and egocentric tasks.
Hippocampal and striatal place- and movement-correlated cell firing was recorded as rats performed place or response tasks in a familiar environment, and then after cue manipulation. In a familiar environment, place field properties did not differ across brain structures or task conditions. Movement correlates were stronger during place task performance only in hippocampal neurons. After cue ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 9 شماره
صفحات -
تاریخ انتشار 1993